
MTH245 Unit 4 Module 3 Binomial Distribution 

Let’s look at a specific type of probability distribution called a binomial distribution.  “Bi” means 

two, so this distribution occurs when we have two possible outcomes:  success and failure; 

heads and tails; male and female, etc.   

If we flip a fair coin once we have two outcomes: heads or tails.  If we are interested 

in the number of heads our sample space would be 0, 1.  The probability distribution 

for the number of heads would be: 

If we flip a coin twice and count the number of heads our sample space would be 0, 

1, and 2 (for the events TT, TH, HT, and HH) and the probability distribution would 

be: 

If we were to flip TEN coins it starts to get really complicated.  We could set up an Excel page 

and model tossing ten coins, but there is a way to do this theoretically in Excel also. 

If this were a statistics class we would be using a formula: 𝑃(𝑥)  =
𝑛!

𝑥!(𝑛−𝑥)!
𝑝𝑥(1 − 𝑝)𝑛−𝑥.  We 

don’t need to go there.  Instead we will use Excel, as this formula is already programmed in.  

There are several parameters we will need to enter.  Remember, this function is used when we 

have an experiment with two possible outcomes, but also with the probability of success being 

“p”, and what we want to find is how likely it is to have “x” successes when the experiment is 

repeated “n” times.   

Format of the Binomial Distribution in Excel is =BINOMDIST(#of successes, # of trials, Prob of 

success in one trial, False).  # of success is how many successes in a particular trial (for example, 

0 heads for our 3 coins), # of trials is the number of trials or times the experiment is 

repeated…the number of coins, the number of questions, the number of passengers, etc..  (We 

will come back to what False is all about later.)   
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Let’s start with modeling flipping three fair coins and counting the number of heads.  The 

probability of heads is .5 on any one flip.  We are interested in the number of successes being 

all of the possible outcomes so we will first find the probability of 0 heads in 3 flips, then 1 head 

in three flips, then 2 out of 3 and last 3 out of 3.  We can arrange this in a table and create a 

probability distribution for the sample space:  

  

 

Let’s do another one and see what the false business was about.  We are going to take a test 

with 6 questions.  We have not studied at all but fortunately the test is multiple choice, with 

only 3 options for each question.  How likely are we to guess our way to a passing grade?  Our 

possible outcomes for this experiment are to get 0, 1, 2, 3, 4, 5, or 6 answers correct.  The 

probability of getting any one question correct is 1/3.  There are a total of 6 questions we are 

going to guess at.   

 

 

So what does this table tell us?  The first row tells us that the probability of getting exactly 0 of 

the 6 questions correct is 0.0878, or about 8.78%.  A couple rows down and we see that the 

probability of getting exactly 2 of the 6 questions correct is about 32.9%.  What would be the 

probability of getting less than 5 questions correct?  This would be the P(0 correct)+P(1 

correct)+P(2 correct)+P(3 correct)+P(4 correct).  We can add those all up, but a useful addition 

to our table would be a third column with the cumulative probabilities.  We can add that 

column by copying over our binomdist column and changing the “false” to “true”.   



Now take a look at the x = 4 row.  The probability of getting exactly 4 answers correct is 8.23%, 

The probability of getting 4 or fewer answers correct is 98.22%.  So the probability of getting 

less than 5 questions correct is also 98.22.  How about the probability of getting 5 or more 

answers correct?  This would be a complementary event, P(x>=5) = 1 - .9822 = 0.0178, or 1.78% 

chance of doing really well on this test. 

 

 

 

 

 

One more thought.  When we set up a simulation to, say, 

toss ten coins and count the number of heads observed a 

large number of times and use those results to estimate the 

probability distribution of observing “x” heads when 10 

coins are tossed,  that would be an empirical distribution 

table, based on a large sample.  And each of us running the 

simulation will get slightly different results.  When the 

binomial function is used to build a probability distribution 

for observing “x” heads in ten tosses of a coin, that is a 

theoretical distribution table, and we should all be getting 

exactly the same result. 

 


